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ON THE ACCURACY OF THE DESINGULARIZED BOUNDARY
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SUMMARY

In this paper the numerical properties of the desingularized boundary integral formulation were studied within
the framework of free surface potential problems. Several numerical experiments were carried out on simple test
cases in order to investigate the effects on the accuracy of the distance between the singularity sheet and the free
boundary. The optimum value of this distance was related to the mesh size by simple correlations. Once the
desingularized boundary integral formulation had been so calibrated, it was implemented for the solution of two
typical free surface ¯ow problems: wave diffraction around a ®xed obstacle and wave resistance of submerged
bodies. Numerical results are discussed in comparison with experimental data; the computational ef®ciency and
accuracy of desingularized algorithms are con®rmed and speci®ed # 1977 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The numerical solution of free surface ¯ow problems (e.g. wave diffraction around structures or ship

wave resistance) requires the use of accurate and ef®cient algorithms suitable for the severe non-

linear behaviour of boundary conditions at the water±air interface. In the framework of irrotational

¯ows the ¯uid velocity can be expressed by means of the simple layer potential, giving rise to

boundary integral methods that are powerful techniques for solving linear boundary value problems.

The problem is therefore reformulated in terms of an integral equation on the boundary: the effective

dimension of the problem is reduced by one and the computational domain becomes the enclosing

boundary. These methods are based on a fundamental solution satisfying the differential equation (in

some cases, also part of boundary conditions). In conventional boundary integral formulations the

singularities of the fundamental solution lie on the problem domain boundary. This requires accurate

evaluation of singular integrals, namely numerical implementation of complicated and time-

consuming algorithms.

On the other hand, the use of an ef®cient method is the main point in non-linear free surface ¯ow

computations, since a boundary integral problem has to be solved at each time step in time-dependent

problems (or, in steady problems, at each step of the iterative algorithm).
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Remarkable advantages such as high accuracy and simple and fast computation of in¯uence

matrices can be achieved by the desingularized element method (DEM), namely by boundary integral

equations in which the singularity of the fundamental solution is placed away from the boundary.

Another meaningful feature of desingularized boundary integral equations is pointed out by

Patterson and Sheikh,1 who claim the capability of the method to `tolerate higher-order singularities'.

Moroever, in conventional boundary element methods (BEMs) the pressure and velocity on the

boundary can be evaluated only at control points, whereas if a desingularized method is used, the

velocities are continuous and smooth in the neighbourhood of boundaries and the streamlines around

bodies can be computed more accurately.

Several papers concerned with desingularization techniques can be found in the literature.2±8 In

particular, Webster2 concludes his work, related to the computation of potential ¯ow around arbitrary

3D bodies, with this comment: `submergence of the singularity sheet below the surface of the body

appears to improve greatly the accuracy, as long as the sheet is not submerged too far'. Cao et al.5

con®rm this property in applications with boundaries extending to in®nity and, moreover, observe

that desingularized methods allow the use of simple numerical quadrature for the computation of

in¯uence matrices if the distance between the source point and the collocation point is suf®ciently

large, thus reducing the computational effort. They also observe the indirect non-singular method to

be more ef®cient than the direct one. This result is interesting, since in free surface ¯ows, particularly

in the wave resistance problem, indirect methods are generally preferred.3,6±10 In fact, an advantage

of the indirect method is that the derivatives of the velocity potential can be obtained directly once

the strength of the singularity distribution is known, while the direct method requires numerical

differentiation to obtain tangential velocities.

On the other hand, it is known that the position of the singularity sheet has a deep in¯uence on the

accuracy of the solution. The optimum desingularization distance has to be chosen carefully, because

if the singularities lie too close to the boundary, the solution may be inaccurate, whereas if the

singularities are too far from the boundary, the linear system will be poorly conditioned.

This aspect has been analysed by Webster2 for the computation of potential ¯ow past arbitrary 3D

bodies. He remarks that sometimes, even though for a ®rst increase in the number of elements an

improvement in the ¯ow ®eld accuracy is obtained, when the elements are very closely spaced, a

further mesh re®nement can lead to a worsening of the accuracy. This dif®culty can be experienced,

for instance, in determining the ¯ow around a prolate spheroid, when the singularity surface

submerged within the body does not include its foci, since there is no way to continue the solution

analytically from the discretized surface to the body surface. Therefore no singularity distribution

exists on this surface which will be able to generate the body. Webster observes that this kind of

dif®culty can be overcome by introducing suitable criteria for the choice of desingularization

distance: the singularity sheet must be submerged no more than either half of a typical side of the

local element or half of the local minimum curvature radius. As a result, a smaller submergence must

be used for ®ner grids.

Cao et al.5 also discuss strategies for choosing the desingularization distance and suggest this

distance to be related to the local mesh size by means of a simple correlation: again they ®nd that as

the mesh becomes ®ner, the singularity sheet must approach the boundary. They conclude that

`accurate solutions can be obtained by the desingularized boundary method for a large range of

desingularization distance of the order of the mesh size'.

Unfortunately, as experienced in the present work, this range can be different from case to case.

The problem of accuracy dependence on desingularization distance has therefore been re-examined

carefully. Heuristic criteria are suggested to select the position of the singularity sheet in order to

minimize the error. Simple cases of wavy ¯ows have been studied, for which the exact solution is

known, in order to obtain simple correlations for the optimum value of the source location versus the
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discretization parameters, similar to the one proposed by Cao et al.5 The high accuracy of the

desingularized method, previously detected by other authors, is shown and speci®ed, in comparison

with a conventional piecewise constant panel method.

Then this methodology has been applied for some computations concerning the non-linear

diffraction of regular waves around a ®xed obstacle as well as the wave resistance problem of simple-

shaped submerged bodies. Grid dependence tests show a very fast convergence of the solution, in

good agreement with experimental data.

2. FREE SURFACE FLOW MODEL

The free surface ¯ow around a simple-shaped submerged body B is considered, assuming viscous and

compressibility effects to be negligible. Vorticity is neither produced nor shed at the boundaries. The

¯ow is therefore potential and the velocity ®eld can be described by means of a harmonic function f
such that

~u�x; y; z; t� � fu; v;wg � Hf�x; y; z; t�: �1�

The reference frame is assumed to be ®xed with the body, the x-axis is oriented as the incoming ¯ow

(incident wave train or uniform stream) and the z-axis is oriented upwards.

The boundary condition on the body surface (and at the bottom in ®nite depth problems) is

Hf � ~n � @f
@n
� 0 on @B; �2�

~n being the unit vector orthogonal to the solid surfaces.

The boundary conditions at the water±air interface S are more complex, since they are non-linear

and to be enforced at a free boundary whose shape is not known a priori. The free surface can be

described, when overturning of waves is excluded, by a single value function z � Z�x; y; t�. This

function must satisfy the kinematic condition

@Z
@t
� n

@Z
@x
� v

@Z
@y
� w on S �3�

and the dynamic condition for the pressure p that reads, if surface tension is neglected,

p � pat on S; �4�

where pat is the atmospheric pressure at the free surface. This condition can be related to the potential

f by means of Bernoulli's theorem as

@f
@t
� 1

2
Hf � Hf� gZ � 0 on S; �5�

g being the acceleration due to gravity.

The problem stated in these terms does not determine a unique solution. In fact, initial conditions

for the potential as well as for the free surface con®guration are required, whereas in the steady case a

radiation condition is to be enforced.

In all the problems studied, the symmetry condition has been ful®lled on y� 0 by the method of

images, so only one half of the free surface has been discretized.
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2.1. Unsteady ¯ow (diffraction problem)

For computational purposes it is suitable to split the velocity potential f as

f � j0 � j1; �6�
where j0 is the incident wave potential (usually a Stokes wave). The convenience of expressing the

potential as a sum of two terms as in (6) has been pointed out in a previous work:8 such a

decomposition avoids the need of generating the incident wave train by means of a numerical

wavemaker, with all the related dif®culties for calibration; on the other hand, the damping of the

outgoing signals at the boundary of the discretized free surface is simpli®ed.

The potential j0 is harmonic in the domain given by the space ®lled with the ¯uid and that

occupied by the body. It therefore satis®es the impermeability condition on the bottom (if present) but

not on the surface of the body. For the free surface elevation we assume, according to (6),

Z � Z0 � Z1; �7�
where Z0 is the free boundary in the absence of the body (incident wave).

Of course, j0 veri®es conditions (3) and (4) on the `free' wave Z0. On the other hand, the

perturbation potential j1 satis®es the solid boundary condition

@j1

@n
� ÿ @j0

@n
on @B; �8�

whereas at the actual free surface Z we have

@j1

@t
� 1

2
Hj1 � Hj1 � Hj0 � Hj1 � gZ1 � ÿ

@j0

@t
ÿ 1

2
Hj0 � Hj0 ÿ gZ0 on S; �9�

@Z1

@t
� @f
@x

@Z1

@x
� @f
@y

@Z1

@y
� @f
@z
ÿ @Z0

@t
ÿ @f
@x

@Z0

@x
ÿ @f
@y

@Z0

@y
on S: �10�

When the wave amplitude is estimated to be small enough, a reasonable description of the ¯ow can

be gained by the linearized version of (9) and (10):

@j1

@t
� gZ1 � 0 on z � 0; �11�

@Z1

@t
ÿ @j1

@z
� 0 on z � 0: �12�

Note that in the linear case the boundary conditions on the free surface are enforced on the

undisturbed water plane z� 0 and, of course, only the ®rst term in the Stokes wave is taken into

account in the incident wave potential j0.

As stated before, the solution of the diffraction problem requires initial conditions for j1 and Z1.

2.2. Steady ¯ow (wave resistance problem)

The computation of the steady wave pattern generated by a submerged or ¯oating body moving

with uniform forward speed U1 is one of the classic problems in naval hydrodynamics. The ¯ow

potential f is typically computed by a uni®ed free surface condition and the wave elevation is next

obtained explicitly by the dynamic condition, whereas in the diffraction problem the kinematic and
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dynamic conditions are generally implemented separately. In the fully non-linear case the free surface

boundary conditions are

@f
@l

� �2@2f
@l2
� g

@f
@z
� 0 on S; �13�

z � Z�x; y� � 1

2g
U 2
1 ÿ

@f
@l

� �2
" #

on S; �14�

where l is a curvilinear abscissa de®ned along the streamline lying on the free surface.10 In fact, in the

steady case the free surface is an envelope of streamlines.

Linearized forms of the free surface conditions have also been considered in this work. In the

Neumann±Kelvin problem the ¯ow is linearized with respect to the free stream U1:

@2j1

@x2
� g

U 21

@j1

@z
� ÿ @

2j0

@x2
on z � 0; �15�

z � Z�x; y� � ÿU1
g

@j0

@x
� @j1

@x

� �
on z � 0; �16�

with

f�x; y; z� � U1x� j0�x; y; z� � j1�x; y; z�;

where j0 is the velocity potential due to the interaction between the free stream and the body (with

@j0=@z � 0 on z� 0) and j1 is the velocity potential due to the interaction between the free stream,

the body and the free surface. On the other hand, the Dawson formulation9 implies the ¯ow to be

linearized with respect to the double model solution f0 � U1x� j0:

@f0

@l

� �2@2j1

@l2
� 2

@f0

@l

@2f0

@l2

@j1

@l
� g

@j1

@z

� ÿ @f0

@l

� �2@2f0

@l2
on z � 0; �17�

z � Z�x; y� � 1

2g
U2
1 ÿ

@f0

@l

� �2

ÿ2
@f0

@l

@j1

@l

" #
on z � 0: �18�

In this case, according to the linearization, the curvilinear abscissa l is de®ned on the local streamline

of the basic ¯ow lying on the symmetry plane z� 0.

Of course, in the wave resistance problem no initial condition is to be applied, since the ¯ow is

steady. The uniqueness of the solution is then achieved by a radiation condition:

lim
x!ÿ1Hf � U1: �19�

This condition implies that waves propagate only downstream, according to the dispersion properties

of water waves free from surface tension.
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3. INTEGRAL FORMULATION

The solution of the problems described in the previous section can be formulated in terms of the

potential of single layer (giving rise to the classical boundary element method), i.e.

j1�P; t� �
�
@D

s�Q; t�
jP ÿ Qj dS; �20�

where P is the ®eld point and Q lies on the boundary of the ¯uid domain D. Desingularization

consists of moving the source point Q outside the ¯uid domain. Moreover, the integral (20) has been

replaced by a discrete summation of N isolated singularities located near the ¯uid domain boundary:

j1�P; t� �PN
i�1

si�t�
jP ÿ Qij

; �21�

the discrete source si�t� being placed in Qi, which does not belong to @D.

The use of desingularized methods leads to certain mathematical dif®culties. When the velocity

potential is represented by a distribution of potential of simple layer over the actual boundary, the

exact ¯ow problem can be written as a Fredholm integral equation of the second kind. Solution

existence and uniqueness theorems for this equation are well established. On the other hand, when the

singularity sheet is moved away from the boundary, the integral equation of the second kind is

replaced by one of the ®rst kind, for which existence and uniqueness are not guaranteed, as

manifested in the ill-conditioning of the resulting algebraic system if the desingularization distance is

not properly chosen. In fact, desingularization increases the condition number of the resulting linear

system. Webster2 suggests the following considerations. By introducing proper error potentials, a

sequence of potential problems leading to the exact ¯ow can be conceived. Bearing in mind that as

the grid is re®ned, the singularities approach the boundary with a suitable law, the singularity sheets

related to these potentials would result in an onion-like layering, with each succeeding sheet closer to

the exact boundary and each with a ®ner spacing. The limiting sheet lies on the actual boundary and

is characterized by an in®nitely re®ned mesh. Therefore, as the mesh size tends to zero, the non-

singular formulation is consistent with the singular formulation and the same existence and

uniqueness theorems can be used, as long as the desingularization distance is properly related to the

mesh size.

4. ON THE CHOICE OF DESINGULARIZATION DISTANCE

This aspect is investigated by simple test problems in unbounded domains for which the exact

solution is known and a simple discrete distribution of singularities can be imposed as a regular

network of sources at the same height above the plane of the control points (z� 0). The numerical

error is then studied when the various parameters of the discretization are changed. Next the value of

the source height is expressed by means of simple formulae as a function of the other discretization

parameters.

However, the optimum value for the distance between the source point and the control point can

change from case to case. This can be shown by a simple example, the same as used by Cao et al.5

Consider the potential c induced on the plane z� 0 by a dipole located at a certain submergence h.

This potential can be obtained by a uniform distribution of sources on a horizontal plane and the

solution of the Dirichlet problemPN
k�1

sk

jP ÿ Qk j
� c�P�; P � x; y; 0;
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yields the source strength sk . Then, to check the effect of the source plane depth on the accuracy, the

L2-norm of the error E2 with respect to the potential c can be evaluated on the normal derivative at

the same collocation points:

E2 �
1

N

PN
i�1

PN
k�1

sk

@

@z

1

jPi ÿ Qk j
ÿ @c�Pi�

@z

� �2
" #

; Pi � xi; yi; 0:

s
As a result, in this case the optimum submergence for the singularity sheet, as the mesh is re®ned,

approaches the dipole submergence h: this result could be misleading and cannot be extended to more

general cases. Therefore, in order to obtain general enough information suitable to be extended to free

surface problems, two examples of steady wavy ¯ows have been examined. Then the correlation for

the desingularization distance will be used for the numerical solution of more realistic ¯ow

con®gurations, yielding satisfactory results.

4.1. Steady free waves

The ®rst problem studied consists of the numerical solution of a linearized free surface ¯ow in an

unbounded domain. The Neumann±Kelvin formulation outlined before is therefore implemented, but

in the absence of any solid boundaries.

Hereinafter, all the quantities are considered non-dimensional, whereas dimensional variables are

characterized by `primes'. The exact dimensionless potential is

j1�x; y; z� � j01
U1l

� A0

l
e2pz=l sin 2P

x0

l

� �
� Ae2pz sin�2px�; x; y 2 �ÿ1;1�; z 2 �ÿ1; 0�;

�22�
where

l � 2pU2
1=g �23�

is the wavelength and A is a non-dimensional constant. The wave elevation is given by

Z�x; y� � Z0�x; y�
l
� ÿ 1

2p
@j1�x; y; 0�

@x
� ÿA cos�2px�: �24�

The numerical solution is obtained by solving the Dirichlet problemPN
k�1

skp��xi ÿ xk�2 � �yi ÿ yk�2 � Z2
s �
� A sin�2pxi�; i � 1; . . . ;N ; �25�

and the wave elevation Z is computed by

Zi � ÿ
PN
k�1

sk �
xk ÿ xi

��xi ÿ xk�2 � �yi ÿ yk�2 � Z2
s �3=2

; i � 1; . . . ;N ; �26�

The network of point sources is regular and is placed above a square region 2l62l wide. Two cases

have been considered: non-staggered-type grid (see Figure 1(a)) and staggered-type grid (see Figure

1(b)).

In Figure 2 the error E2 is reported as a function of the non-dimensional source position Zs � Z 0s=l,

where

E2 �
1

N

PN
i�1

�Zi � A cos�2pxi��2
� �s

; �27�

N being the number of control points in the non-staggered grid (four points per wavelength in each

direction for the case shown in the ®gure). The reciprocal of the condition number is also reported in
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the same ®gure. It can be noted that the error has two local minima, one at Zs � 0�5 and the other at

Zs � 2. The latter minimum is slightly smaller than the former, but, conversely, the condition number

is too large to be used in practical computations. Therefore the point source distance corresponding to

the ®rst local minimum is to be preferred.

In Figure 3 the error E2 is reported, again as a function of Zs, for 10 square element grids, the size

ranging from 1=6 to 1=15 of the wavelength. The discretized domain has been held at 2l62l wide in

all cases. It can be observed that for all grids the numerical solutions show the same behaviour

concerning the error.

In Figure 4 the optimum source distance from the free surface, ~Z, is plotted against the lateral grid

dimension dy for each grid size dx (direction of wave propagation). The error E2, as a function of the

mesh size, is plotted in Figure 5(a) for square element staggered grids. Comparison with the method

of Hess and Smith justi®es the great interest of desingularization techniques. In fact, whereas the

Figure 2. Numerical computation of a steady regular wave on a non-staggered grid: L2-norm of error (E2) and reciprocal of
condition number (RCN) versus desingularization distance (Zs). Discretization with four elements per wavelength

Figure 1. Sample grids: (a) non-staggered type; (b) staggered type
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Figure 3. E2 versus Zs for 10 square element grids (non-staggered grid)

Figure 4. Optimum desingularization distance ( ~Z) versus lateral grid size dy for various dx (non-staggered grid)
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Figure 5(a). E2 versus dx for desingularized method (DEM) and conventional panel method (BEM) for square element
staggered grids

Figure 5(b). RCN versus dx for desingularized method (DEM) and conventional panel method (BEM) for square elements
staggered grids
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panel method exhibits a convergence approximately of order 0�6, the desingularized method shows a

convergence nearly of the fourth order, though it is much simpler to implement and requires a

signi®cantly lower CPU time. On the other hand, Figure 5(b) shows the behaviour of the reciprocal of

the condition number, again as a function of the mesh size. The best comment on this ®gure, when

compared with the previous one, is a statement due to Cao et al.:5 `a poorly conditioned system does

not necessarily imply an inaccurate solution'. Of course, all the results obtained in the present work

have been computed in double precision, but it seems clear that grid re®nement beyond a certain

threshold can create some dif®culties. In fact, the reciprocal of the condition number must be at least

one order of magnitude higher than the round-off error, in order to obtain reliable solutions, also

when direct solution methods for the resulting algebraic system are used, in particular when the

system is large (e.g. a 500065000 matrix).

Moreover, in so far as Figure 5(a) shows grid re®nement to produce very fast convergence to the

exact solution, Figure 5(b) seems to suggest that in the limit a numerical solution does not exist, since

the condition number rapidly tends to in®nity. This result seems to be in contrast with the arguments

outlined in Section 3, related to the consistency of the desingularized formulation with the singular

one. On the other hand, it is worth noticing that the integral formulation cannot be replaced by a

discrete distribution of singularities for much re®ned grids. Moreover, in the analysis carried out so

far, the desingularization distance has been chosen in order to obtain the best accuracy in a practical

range of the mesh size. It is reasonable to suppose that in the limit it is not possible to preserve the

convergence rate previously shown, since, in fact, the singular formulation is less accurate than the

non-singular one. Therefore, in so far as the mesh is much re®ned, the singularity sheet will approach

the boundary with a different law in order to ensure consistency with the singular formulation.

The shape assumed by the curves of Figure 4 suggest that the use of the following expression for

the optimum distance:

~Z � k dxm dyn: �28�

A similar expression is suggested by Cao et al.5 In dimensional quantities, formula (28) reads

~Z 0 � kl1ÿmÿn dx0m dy0n: �29�

The unknown constants k, m and n have been computed by a least squares ®t, obtaining

k � 0�969; m � 0�294; n � 0�016 �30�

for the non-staggered grid, whereas for the staggered grid the following values are computed:

k � 1�627; m � 0�453; n � 0�018: �31�

For example, to give an idea of the difference between the correlations in these two cases, if we apply

the values given by (30) on a staggered grid with dx � dy � 1=6, we obtain ~Z � 0�556 and

E2 � 2� 10ÿ4, instead of the proper values ~Z � 0�711 and E2 � 2� 10ÿ5 obtained by the use of

(31) in the integral equation. This difference, though seemingly meaningless for practical applications

(in both cases the solution is very accurate), is nevertheless signi®cant.

Formula (28) has next been used for the vertical positioning of sources in non-uniform grids

coarsened towards the boundaries of the truncated domain. In particular, the same computations

related to the steady plane wave have been performed on two types of grids: in the ®rst case the ratio

between the sizes of the largest element and the smallest one is equal to 1�875, whereas in the second

case this ratio is equal to 2�5.
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The computation of such a regular ¯ow ®eld does not require, of course, the use of a stretched grid;

this test case has been carried out in order to check the numerical behaviour of the method in non-

uniform geometries. However, similar situations occur in applications; in fact, in the far ®eld the

mesh is typically coarsened, in particular when a polar grid is used.

Figure 6(a) shows the error E2 as a function of the number of elements for the panel method in the

case of uniform and non-uniform grids. As seems reasonable, the convergence behaviour is very

similar in the three cases: in fact, in stretched grids the higher accuracy in the ®ne mesh region is

more or less balanced by the lower accuracy in the coarse mesh region. The small difference is

probably due to the different effect of truncation in the three cases.

Figure 6(b) shows the error E2 as a function of the number of elements for the desingularized

method. The broken curves are obtained by the vertical positioning of singularities according to (28)

and (31), whereas the dotted and chain curves refer to the distribution of sources on a horizontal plane

whose height decreases as the number of elements increases, as usual. These results suggest that a

uniform network is always preferable, also because the ill-conditioning of the resulting linear system

becomes worse in non-uniform discretizations. However, as long as a stretched grid is inevitable, the

arrangement of singularities on a horizontal plane is to be preferred. The oscillations in the curve

related to the second stretched grid (sources positioned according to local mesh size) are due to ill-

conditioning: in this case the reciprocal of the condition number reduces beneath the threshold of the

round-off error.

In the present work the numerical applications to practical cases have therefore been performed

using uniformly spaced grids.

Figure 6(a). E2 versus number of elements in uniform and non-uniform staggered grids for conventional panel method
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4.2. Steady waves past a submerged dipole

The analytical solution for the wave pattern generated by the potential ¯ow past a sphere located at

�0; 0;ÿh� is given by11

Z�x; y� � h

8�r2 � h2�3=2

� 1

8pFr2

�p=2
ÿp=2

da
�1

0

cos�mh� � m sin�mh� cos2 a
cos4�am2� � 1=Fr4

eÿmrj cos�aÿy�jm dm

� 1

4Fr4

�yÿp=2
ÿp=2

sec4 a sin
r

Fr2
cos�aÿ y� sec2a

� �
eÿ�h=Fr2� sec2a da; �32�

where Fr � U1=
p�gL� is the Froude number related to the diameter L of the submerged sphere,

r � p�x2 � y2� and y � tanÿ1�y=x�. The numerical solution is obtained by the discrete form of (15)

and (16). In this case, j0 is the potential of the dipole and its image:

j0�x; y; z� � M
x

�x2 � y2 � �z� h�2�3=2 �
x

�x2 � y2 � �zÿ h�2�3=2
� �

:

The dipole strength M is U1L3=16. The convective term @2j1=@x
2 which appears in the uni®ed free

surface condition (15) is implemented by analytical derivation, whereas the radiation condition is

satis®ed by upstream shift of the collocation points10,12 (or by downstream shift of the source

locations). Moreover, according to the analytical model, the potential j1 does not ful®l the

impermeability condition on the sphere surface.

Figure 6(b). E2 versus number of elements in uniform and non-uniform staggered grids for desingularized method
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The distribution of sources of strength si lies above the free surface, at a distance given by the

correlation (28), calibrated for the staggered-type grid.

In Figure 7 the numerical results are compared with the analytical solution (32)

�h � 0�7;Fr � 0�4�. The computational domain, discretized by a staggered-type grid, has been

taken as 3�5 wavelengths long (two downstream and 1�5 upstream) and two wavelengths wide; 224

elements have been used, with every wavelength described by eight nodes. Figure 7(a) shows a

comparison between the contour lines of the wave pattern: the lower part is the analytical solution

Figure 7(b). As in Figure 7(a): comparison between analytical and numerical solutions at longitudinal mid�section

Figure 7(a). Steady waves past a submerged dipole: comparison between analytical and numerical solutions (Froude number
0�4, depth 0�7); contour lines of analytical solution (bottom half) and numerical solution obtained by desingularized method

(top half). Levels 7 0�139,. . .,� 0�127 (0�01)
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and the upper part is the numerical solution. In Figure 7(b), longitudinal mid-sections of the wave

pattern are depicted. In both cases the good accuracy of the desingularized method is apparent, in

particular when compared with the method of Hess and Smith.

5. NUMERICAL APPLICATIONS

In the numerical examples the surface of the solid body has been discretized by NB quadrilateral ¯at

panels on which the source strength is piecewise constant.13 On the free surface the boundary integral

is approximated by a distribution of NS sources placed at a ®xed distance above the boundary,

following the criteria outlined in the previous section.

In the non-linear problem the singularities are moved vertically at each time step (or, in the steady

case, at each iteration) following the wave elevation, according to the correlations obtained

previously. Cao et al.5 suggest the singularities to be moved in a direction normal to the free surface:

this could be important for the simulation of rather steep waves.

5.1. Unsteady ¯ow (diffraction problem)

The ®rst numerical example studied is concerned with the wave diffraction of regular waves

around a ®xed obstacle in ®nite depth waters. The presence of the bottom is taken into account by

means of the method of images. The representation of the perturbation potential can be therefore

summarized in the formula

j1�P� �
PNB

j�1

sj

�
@Bj

G�P;Q� dS �
�
@ ~Bj

G�P;Q� dS

 !
� PNS

k�1

sk �G�P;Qk� � G�P; ~Qk��; �33�

where @Bj is the jth panel on the surface of the obstacle, sj is the (constant) source density on it, @ ~Bj is

the mirror image of @Bj with respect to the bottom, Qk is the position of the kth source above the free

surface, sj is the source strength at Qk and ~Qk is the image of Qk .

In the unsteady numerical simulation the solution is updated from tn to tn � Dt � tn�1 by means of

the classical fourth-order Runge±Kutta scheme. Each intermediate stage of the Runge±Kutta

algorithm is computed as follows:

1. Given the potential j1 and its derivatives on @B [ S at the previous stage, the dynamic and

kinematic boundary conditions (9) and (10) (or (11) and (12) in the linear case) are used to

update the ¯ow ®eld at the free surface.

2. The new values of j1 in the NS collocation points on the free surface and the Neumann

boundary condition at the NB collocation points on the body surface give rise to NB � NS linear

conditions relating the NB � NS unknowns sj and sk . The resulting linear system is solved by

LU factorization of the coef®cient matrix.

3. The new source strengths sj and sk yield the values of j1 and its derivatives on @B [ S for the

next Runge±Kutta stage.

An important aspect is the behaviour of the numerical model far from the body; in fact, since the

boundary extends to in®nity, a far-®eld condition is required in order to avoid unphysical re¯ection of

the outgoing waves at the truncation of the computational domain. These re¯ected waves, if not

damped, can remarkably affect the wave ®eld around the obstacle, as will be shown later. In the

present work this problem is solved by means of the damping layer suggested by Baker et al.:14 the

term ÿej1 is added to the right-hand side of the dynamic boundary condition (9) (or (11) in the linear

case), whereas the term ÿeZ1 is introduced on the right-hand side of the kinematic boundary
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condition (10) (or (12) in the linear case), namely

LHS of
eq: �9�

eq: �11�
� �

� RHS of
eq: �9�

eq: �11�
� �

ÿ ej1; �34�

LHS of
eq: �10�
eq: �12�

� �
� RHS of

eq: �10�
eq: �12�

� �
ÿ eZ1; �35�

where e is a coef®cient depending on the distance from the obstacle. In the problem studied in this

paper, it has the expression

e �
0; r < R0;

e0

r ÿ R0

R1 ÿ R0

� �2

; R0 4 r 4R1;

e0; r > R1;

8>>><>>>: �36�

where e0 is a ®xed coef®cient (typically e0 � O�1� in the calculations performed), r � p�x2 � y2� is

the distance from the origin and R0 and R1 > R0 are two real numbers chosen on the basis of

numerical experience �R1 ÿ R0 � O�l��.
In the far ®eld these terms act like a damper only on the perturbation potential j1 and on the wave

height Z1, while the assigned basis ¯ow is not affected. As previously mentioned, this is one of the

major advantages of the decomposition (6).

In the numerical example the wave diffraction around a simple-shaped shoal is computed and the

results are compared with experimental data.15 The geometry of the bottom is given by (see Figure 8)

z � �hM ÿ hm��r=RS�2 � hm; r < RS;
hM; r 5RS;

�
�37�

where hM and hm are the maximum and minimum depths respectively and RS is the radial extension

of the shoal. Moreover, in the case studied, RS=l � 2, hM=l � 0�375 and hm=l � 0�125, where l is

the wavelength.

Figure 8. Diffraction around a shoal: top, sketch of problem; bottom, sample grid
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In the computations the shoal is discretized with 224 panels, whereas a suitable grid for the free

surface has been chosen by means of numerical experiments. In Figure 9 the ratio of the linear

diffracted wave amplitude to the incident wave amplitude at the transverse section located at x � RS

is plotted. The computation has been performed on four grids containing 3669, 47611, 70616 and

93621 elements. For all cases the discretized free surface is 11�5l long (5.2l in the upwave region

and 6�3l in the downwave region) and 3�75l wide. Moreover, for all the grids the ratio dy=dx between

the mesh sizes in the transverse and longitudinal directions equal to 1�5. The behaviour shown in

Figure 9 indicate that the convergence is very fast and the computations can be performed with the

third grid (six elements per wavelength).

In Figure 10 the linear results are compared with the non-linear ones, computed with the same grid,

and with experimental data15 at the same transverse section and at another one located RS=2
downwave. The incident wave steepness is 2pH=l � 0�1.

Figure 9. As in Figure 8: grid dependence test in a transverse section located downwave, above end of shoal

Figure 10. As in Figure 8: comparison between numerical results and experimental data (u, left side; n, right side) at two
transverse sections located downwave
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Above the top of the shoal, in the middle of the ¯uid domain, the non-linear model gives a better

prediction of the wave height than the linear one, whereas, departing from the obstacle, the linear and

non-linear models give similar results and both show a reasonable agreement with experimental data.

In Figure 11, ®nally the importance of the damping layer can be observed. In the longitudinal mid-

section the envelope of the wave elevation Z1 is shown in the presence and absence of the `numerical

beach'. Whereas in the computations with the damping layer the envelope, after the initial transient,

becomes steady and regularly shaped, in the other case it is evident how re¯ected waves signi®cantly

affect the ¯uid domain. In the ®gure the damping coef®cient is not plotted to scale for the sake of

clarity. In the computations the damping layer has been used with the following coef®cients:

R0 � 2�5l; R1 ÿ R0 � l; e0 � 0�4:

The diffraction problem around the parabolic shoal was also studied in a previous work,8 yielding

more or less similar results, but in the present paper the computational cost has been signi®cantly

reduced (six elements per wavelength versus 14) by means of the systematic analysis concerning the

desingularization distance.

5.2. Steady ¯ow (wave resistance problem)

In the diffraction problem the potential j0 is a known function, whereas in the wave resistance

problem the double model potential is computed, as the ®rst step in the numerical procedure, by the

impermeability condition on the body

@j0

@n
� ÿ ~U1 � ~n; �38�

Figure 11. As in Figure 8: effect of damping layer
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where

j0�P� �
PNB

j�1

s0j

�
@Bj

G�P;Q� dS �
�
@ �Bj

G�P;Q� dS

 !
; �39�

@ �Bj being the mirror image of @Bj with respect to the unperturbed free surface (z� 0). In this case the

perturbation potential j1 has the expression

j1�P� �
PNB

j�1

sj

�
@Bj

G�P;Q� dS � PNS

k�1

skG�P;Qk�; �40�

since these numerical examples are concerned with deep waters.

Linear and fully non-linear conditions at the free boundary have been considered. For the linear

problem the Dawson formulation has been implemented,9 whereas the non-linear problem is solved

by a successive linearization iterative procedure. At every step a linear problem is solved. The

potential f�x; y; z� is split into two terms:

fn�1 � fn � j1: �41�
In this decomposition the basic ¯ow is the solution at the previous step. Therefore the nth step

consists of the solution of equation (17), linearized around the free surface ¯ow computed at the

previous step:

@fn

@l

� �2
@2j1

@l2
� 2

@fn

@l

@2fn

@l2

@j1

@l
� 1

Fr2

@j1

@z
� ÿ @fn

@l

� �2
@2fn

@l2
ÿ 1

Fr2

@fn

@z
: �42�

This iterative algorithm, similar to others proposed in the literature,3,7 is more ef®cient than the

method developed in a previous work10 based on a double cycle of iterations.

As in the diffraction problem, in the non-linear case the sources are moved vertically, within the

iterative procedure, according to (28) and (31), since staggered-type grids have been used.

The method has been implemented for the computation of the wave pattern generated by the steady

motion of two submerged bodies of revolution (Figure 12):

Figure 12. Bodies of revolution considered in wave resistance problem
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(a) a circular cylinder with a half-sphere-shaped `bow' and the `stern' constituted by a half-prolate

spheroid

(b) a prolate spheroid.

All the computations have been carried out on a uniform 3269 grid with square elements, extending

1�2L upstream, 2�4L downstream and L sideways. Each wavelength has been discretized by 11

elements. The linear results have been obtained by the Dawson formulation. In Figure 13(a) the free

surface contour lines are depicted in the linear case (bottom half) and in the non-linear case (top half).

The wave steepening as well as the wavelength shortening, typical of non-linear waves, can be

recognized. The results have also been compared with some experimental data obtained at the

University of Trieste.16 Figure 13(b) shows three longitudinal sections of the free surface; the

improvement of the non-linear results with respect to the linear ones is apparent.

Finally, in Figures 14(a) and 14(b) the same results obtained for the prolate spheroid are depicted.

Also in this case the non-linear results show rather good agreement with the experimental data.

Figure 13(a). Steady waves past a submerged cylinder: comparison between linear (bottom half) and non-linear (top half)
methods. Linear solution levels 7 0�040,. . .,� 0�057 (0�004). Non-linear solution levels 7 0�042,. . .,� 0�062 (0�004)

Figure 13(b). As in Figure 13(a): comparison between experimental data and numerical solution at longitudinal sections
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6. CONCLUSIONS

Some free surface potential ¯ow computations were performed making use of the concept of

boundary integral desingularization. The properties of numerical algorithms based on the

desingularized boundary integral formulation were analysed: simple test cases were studied showing

the high accuracy typical of this kind of method (about fourth-order). The main contribution of this

work is to specify the criteria related to the choice of the optimum desingularization distance, which

could be crucial for the ef®ciency of desingularized methods. The optimum value for this distance

was then given, by simple correlations, as a function of the mesh size.

In the numerical examples, concerned with wave diffraction around ®xed obstacles and wave

resistance of submerged bodies, grid dependence tests and comparisons with experimental data show

a very satisfactory numerical behaviour of the desingularized element method.

On the other hand, the results obtained for non-uniform grids seem to suggest that the

desingularized method, formulated in terms of point sources, is not so suitable for complicated

geometries, for which strongly deformed grids are needed. This problem will be the subject of future

work.

Figure 14(b). As in Figure 14(a): comparison between experimental data and numerical solution at longitudinal sections

Figure 14(a). Steady waves past a submerged prolate spheroid: comparison between linear (bottom half) and non-linear (top
half) methods. Linear solution levels 7 0�049,. . .,� 0�055 (0�004). Non-linear solution levels 7 0�046,. . .,� 0�060 (0�004)
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